skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Casillas, Jazzmin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Inkjet-based bioprinting have been widely employed in a variety of applications in tissue engineering and drug screening and delivery. The typical bioink used in inkjet bioprinting consists of biological materials and living cells. During inkjet bioprinting, the cell-laden bioink is ejected out from the inkjet dispenser to form microspheres with cells encapsulated. The cell distribution within microspheres is defined as the distribution of cell number within the microspheres. The paper focuses on the effects of polymer concentration, excitation voltage, and cell concentration on the cell distribution within microspheres during inkjet printing of cell-laden bioink. The normal distribution has been utilized to fit the experimental results to obtain the mean and standard deviation of the distribution. It is found that the cell distribution within the microspheres increases with the increase of the cell concentration, sodium alginate concentration, and the excitation voltage. 
    more » « less